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Role of voids in granular convection

Troy Shinbrot, D. V. Khakhar, J. J. McCarthy, and Julio M. Ottino
Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208

~Received 3 September 1996!

We study the dynamics of voids in granular convection. First, we associate the formation of voids with the
onset of convection, and thereby develop predictions for convective onset as a function of system parameters.
Second, we use a stochastic approach to examine the role of void penetration in fully developed granular
convection. We find that the vertical flow field should depend on the hyperbolic cosine of the horizontal
coordinate and on a mixed linear-exponential function of the vertical coordinate. We present both lattice-based
and particle-dynamic numerical simulations to validate this analysis, and provide several testable predictions.
@S1063-651X~97!07905-1#

PACS number~s!: 46.10.1z, 05.40.1j, 83.10.Hh
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INTRODUCTION

Granular flow has been the focus of intensive experim
tal study over the past several years@1#. These investigations
are driven by two, largely opposing, motivations. On the o
hand, the variety of behaviors@1,2# that externally excited
granular systems are subject to is unparalleled in fluid pr
lems. On the other hand, there exist exceedingly few gen
principles@3# for the understanding or analysis of these s
tems.

Historically, one of the very few principles of granula
flow thathasbeen well recognized is the need for voids@4#.
Without voids, grains remain trapped in an interlocked st
that obstructs particle transport. With recent advances
computer technology, research has increasingly focused
particle-dynamics investigations, and in this respect the
portance of void dynamics has been lost@5#.

In this paper, we examine two implications of the need
voids in granular flow. In the first section, we derive a cri
rion for the onset of granular convection by assuming t
grains can begin to flow only once voids emerge that ar
least as large as the constituent particles themselves. In
second section, we analyze well-established convect
There, we treat the penetration of voids by particles a
chaotic scattering problem; this permits us to develop a
chastic model leading to a difference equation that gove
convective flow. We test our analytic results with three d
tinct types of numerical simulations: hard-particle, lattic
based~cellular-automata!, and soft-particle.

I. CONVECTIVE ONSET

If voids are required for the flow of granular materia
then it follows that the emergence of voids should coinc
with the onset of convection. Convection is typically pr
duced in experiments by sinusoidally shaking a contai
@1,6,7#. The complete problem of how voids are created i
container containing a large number of grains is difficult@8#
and we do not attempt to solve it here. Instead, we obse
that granular materials typically collide inelastically wi
container walls@9#, so it is appropriate as a first approxim
tion to solve the problem of a single inelastic mass resting
the bottom of a vibrating container@8,10#. In this case, we
551063-651X/97/55~5!/6121~13!/$10.00
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can establish conditions under which the mass will beco
airborne and we can compute the maximum distancehmax
between the bottom of such a mass and the bottom of
container@see Fig. 1~a!#. We conjecture that whenhmax ex-
ceeds the characteristic particle diameterd, it may be pos-
sible for particles to flow. While this criterion for the ons
of convection is only approximate, it can be expressed a
lytically and, as will be shown, it shares similarities wi
existing experimental data.

Throughout this paper we neglect aerodynamic forces;
results are thus suitable for experiments executed in
vacuum or for other problems in which drag or trapped
can be neglected. There is extensive literature on the be
ior of masses subjected to harmonic shaking@8,11#, so we
only briefly review the key points here. In Fig. 1~b!, we plot
as a solid line the vertical position of a harmonically vibrat
platform. A mass supported by the platform will becom
airborne when the platform’s downward acceleration exce
gravity g, that is, when

g5Av2sin~vt ! ~1!

or

t5t05sin21S g

Av2D . ~2!

After leaving the platform, the vertical position of the botto
of the mass will obey

z5S g2D ~ t2t0!
21@Av cos~vt0!#~ t2t0!1@A sin~vt0!#.

~3!

This parabolic trajectory terminates once the mass strikes
platform again. After this point, the mass may again beco
airborne. The resulting vertical position of the mass is d
picted in Fig. 1~b! as shaded circles.

At some point, the height of the mass above the platfo
achieves a maximum, denotedhmax in Fig. 1~b!. As we have
indicated, our motivating conjecture is that the onset of c
vection occurs whenhmax exceeds the particle diameterd,
which, for simplicity, we take to be a constant. In Fig. 2, w
plot the dependence of the frequencyv on the amplitude of
6121 © 1997 The American Physical Society
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FIG. 1. ~a! Inelastic mass of particles on a vibrating platform, with diameter of particlesd and height of mass above platformh indicated.
~b! Position of platform~solid line! and of mass~circles! for platform vibration given byz5sin(16pt).
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shakingA, when this criterion for onset is met, for partic
diameters ranging from 1 to 5 mm. For large amplitude
cillations, onset apparently occurs for frequencies that go
AA. This is what we would naively expect: since the pla
form’s acceleration goes asG[Av2, constant acceleration
lines lie alongv;1/AA. In the figure, we plot two lines
G5g and G51.2g. The first line is the minimal possible
criterion for onset; below this acceleration, inelastic partic
never become airborne. The second line corresponds to
perimental reports of convective onset@12#. For vibration
amplitudes on the order of 1 cm, our criterion for onset a
proximately coincides with experimental observations for
particle sizes@13# in the range 1–5 mm. Our results indica
that for lower amplitude vibrations, higherG values would
be required to achieve onset. This effect should be espec
pronounced for large particles. The converse is also t
higher amplitudes require slightly smaller values ofG. In-
deed, Fig. 2 indicates that slightly lower accelerations th
have been reported to date may also induce convection
pecially at large amplitude.

Also, for large amplitude oscillations we note that ons
should occur at very nearly the same frequency, indepen
of particle size@13#. For small amplitude oscillations, b
comparison, the frequency at onset should significantly
crease with particle size. If we fix the amplitude, we c

FIG. 2. Platform vibration frequency vs amplitude at theoreti
convection onset for various size particles. Solid lines indicate
minimum possible onset criterion: a maximum accelerationG5g
and an often reported onset criterionG51.2g.
-
as
-

s
x-

-
ll

lly
e:

n
s-

t
nt

-

investigate this dependence by plottinghmax vs v, as shown
in the inset to Fig. 3. The asymptotic heighthv→` attained at
large frequency is strictly proportional to the amplitudeA,
according tohv→`510.5A. If we subtract the maximum
height above the platform attained by the mass from th
asymptotic height~i.e., computehmax2hv→`! and plot this
difference as a function of frequency, we obtain the ma
plot of Fig. 3. From these results, we find that for sufficientl
high frequency the following scaling relation is obeyed to
high degree of accuracy:

hmax>10.5A2
48.3g

v2 . ~4!

By associating a particular grain diameterd with the height
hmax as previously described, this equation provides an e
plicit prediction for the onset of convection. Moreover, in th
following section we show that Eq.~4! can be used to predict
the dependence of fully developed convection on driving p
rameters.

l
e

FIG. 3. Inset: height of mass above platform versus frequency
vibration for various amplitudes of vibration~defined in legend!.
Main plot: difference in height from high frequency asymptote ve
sus frequency.
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55 6123ROLE OF VOIDS IN GRANULAR CONVECTION
II. VOID PENETRATION AND CHAOTIC
SCATTERING

A. Central conjecture

The idea here is as follows. Suppose we have a void
two-dimensional~2D! granular material. We take the sim
plest case, where the grains are ordered in a rectangular@14#
lattice, as shown in Fig. 4~a!. Our analysis is not restricted t
a lattice, but the use of a lattice considerably simplifies co
putational comparisons that follow~in particular, the identi-
fication of a void and the vertical velocity of a column
particles become quite clear-cut in a lattice!. To determine
how the flow will evolve, at a minimum we need to kno
which of the particles surrounding the void will ultimate
fill it. The crucial observation is that this is a scattering pro
lem among convex bodies, and it is known that this class
problem, even using stationary scatterers, is exquisitely
sitive to tiny variations in initial conditions@15#. This being
the case, we turn to stochastic methods. All calculations
follow should be understood to apply to averages over v
many realizations. We begin with the central conjecture t
the probability of penetrating a void should increase with t
number of scattering opportunitiespresented. This seem
ingly innocuous conjecture allows us to analytically solve
number of outstanding granular convection puzzles.

Consider first the situation depicted in Fig. 4~a!: a lattice
of particles with a single void. We analyze only the possib
ity of particles penetrating the void from above@16# and we
assume that the void is typically filled in a characteristic tim
t. Then thea priori probability that the void will be filled by
a particle from the column to the left is

PL5
P1

P11P21P3
. ~5!

By contrast, consider the situation shown in Fig. 4~b!, where
particles to the left of the void are taken to move vertica
with fixed velocityVL , measured in particle diameters p
unit time. If mL particles in the moving column pass by th
void in time t, then we expect the probability that the vo
will be filled by a particle from the left to increase corr
spondingly. Here,mL511VLt and the probability to fill the
void from the left is

FIG. 4. ~a! Probabilities for scattering of particles into void from
above left (P1), center (P2), and right (P3). ~b! Scattering prob-
abilities with relative velocity of one column. Here the probabili
that any particle might enter the void from the left is denotedPL .
Dark shaded particles can enter the void.
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PL5
mLP1

mLP11P21P3
. ~6!

So, to take a numerical example, ifP15P350.1P2 and
mL52, then for the stationary case~5!, PL58%, while for
the moving case~6!, PL515%. Thus the probability of pen
etrating a void can easily be doubled by increasing the r
tive velocity of particles passing by the void~in fact,
PL→1 asmL→`!.

To prevent confusion, we remark that the relative veloc
between the adjacent columns that we have referred to ca
viewed in either of two ways, depending on context. In
problem where there is a characteristic timet within which a
void becomes filled, the relative vertical velocityDV is the
quantity of interest and the number of opportunities p
sented to scatter into the void is justDVt. In a problem
where the system is agitated and returned to rest, the rela
velocity can instead be viewed as the totaldisplacementby
which a column settles with respect to its neighbors in a u
settling time. We consider the latter case in this paper, h
ever, to conform with existing nomenclature, we refer to t
displacement as a velocity.

B. Tests of the conjecture

As we have said, this argument hinges on the assump
that a void is filled in a characteristic timet. This is easily
tested: in Fig. 5 we display results of a hard-particle-dynam
@17# simulation, in which a single particle~dark gray in inset!
adjacent to a void is given an initial impulse of fixed amp
tude uvu, but random direction. All other particles are in
tially stationary but are free to move. All particles are ide
tical and have initial separations51 and radiusr50.4s.
Collisions are inelastic with coefficient of restitution 0.7
The void is judged to have been penetrated once the d

FIG. 5. Inset: hard-particle-dynamics scattering configuration
which a single particle~dark gray! scatters with a random initia
direction against initially stationary inelastic masses~light gray!.
Void penetration is judged according to whether or not the d
particle crosses the dotted line shown. Main plot: frequency of s
tering into the void versus the time at which the penetration occ
~measured in units of particle separation per velocity maximum!.
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6124 55SHINBROT, KHAKHAR, McCARTHY, AND OTTINO
particle crosses the dotted line shown in the inset to Fig
separating the initial position of the dark particle from t
void location. In the main part of the figure we plot a hist
gram of the frequency of penetration of the void by the d
particle versus the time taken to achieve the penetrat
From this simulation of 1000 separate trials, we find that
excess of 92% of void penetrations occur within a fixed tim
given by t510r /uvu. Thus, to a high degree of approxim
tion, we can assume that voids are filled within this char
teristic time. Similar simulations with immovable scattere
yield essentially identical results.

As a consequence of this calculation, we conclude t
multiple scattering opportunities can enhance the ove
scattering rate, provided that the time between opportun
is @r /uvu. We test this conclusion in two separate simu
tions, one bounded by particles fixed on a lattice and a s
ond spatially continuous.

The first simulation, which we term ‘‘pseudo-lattice
based,’’ is shown in the inset to Fig. 6. Here we provide
particle on the left~dark gray! with M opportunities to scat-
ter into a void in time 10r /uvu. The particles surrounding th
void ~light gray! are immovable and are fixed on a hexago
lattice. During the same time interval, a second parti
~black! on the right of the void is given only a single oppo
tunity. Technically, this is done by initially giving each pa
ticle a kick of fixed amplitude and random direction, a
allowing the particles to compete to penetrate the void. O
every unit time 10r /(uvuM ), the particle on the left is re
moved and a new particle is placed at the same initial lo
tion but with a new randomized kick direction. After a tim
10r /uvu, no further particle displacements occur, and
simulation is allowed to continue until both moving particl
come to rest. Particle sizes, spacing, and coefficient of re
tution are as before.

In the main plot of Fig. 6, we plot as open circles t
resulting number of void penetrations from the left in 10
trials as a function of the number of opportunities per tri
M . On the same plot, we include as a solid line the pred

FIG. 6. Inset: hard-particle-dynamics scattering configurat
for a void surrounded by a fixed lattice. Dark gray particle on lef
provided multiple opportunities to penetrate the void; compet
black particle on right has only one opportunity. Main plot: vo
penetration rate versus number of opportunities. Open circles
averages over 1000 trials; solid line is fit to Eq.~6!.
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tion from Eq.~6!, using only theM51 point to fit all of the
data:

P̃L5
mL0.151

mL0.15110.849
. ~7!

The simulation and analytic solution agree for smallM .
Logically enough, asM grows, particles on the left can b
replaced in a time smaller thanr /uvu, at which point they can
no longer penetrate the void at all~cf. Fig. 5, for time
,r uvu!. This results in a drop-off of the simulation penetr
tion rate.

We reproduced this experiment in~as nearly as possible!
a lattice-free simulation as well. The geometry for this sim
lation is shown in the inset to Fig. 7. Here the dark gr
particle is trapped between a wall to the left, which mov
downward with mean speedVs , and a second, static, wall t
the right, containing a single void space. The positions of
particles on the two walls are randomized with the condit
that a channel that is at least wide enough for the dark g
particle to traverse must remain. Once particles in the m
ing wall fall below a fixed height, they are removed from th
simulation and replaced at a new, partially randomized lo
tion at the top of the wall. Similarly, once the dark gra
particle falls below the same fixed height, it is removed fro
the simulation and replaced at a height of 3 particle spaci
above the void, and a new randomized kick direction is
plied. A competing particle is also provided, as shown
black; the magnitude of its kick,Vk , is the same as for the
dark gray particle. In this way, asVs /Vk is increased, the
dark gray particle passes the void numerous times and s
provided with multiple opportunities to penetrate the vo
Particle properties are as before, with the exception that
wall particles are taken to have a mass 109 times the mass of
the competing particles. This prevents wall particles fro

n

g

ve

FIG. 7. Inset: hard-particle-dynamics scattering configurat
for pseudocontinuum flow with imposed shear. Dark gray parti
on left is provided multiple opportunities to penetrate the void
virtue of a wall to the left moving down with fixed velocityVs .
Competing black particle to the right of the void has only o
opportunity. Main plot: void penetration rate versus number of o
portunities. Open circles give averages over 1000 trials; solid lin
fit to Eq. ~6!, modified to account for dark gray particle egress eith
through the bottom or through the void~see text!.
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55 6125ROLE OF VOIDS IN GRANULAR CONVECTION
escaping laterally from the simulation. To prevent the d
gray particle from climbing out of the top of the simulatio
it was necessary in addition to include a small gravitatio
acceleration for this particle alone.

In the main part of Fig. 7 we plot the results of this sim
lation. We again present an analytic result from Eq.~6!;
however, in this case, the gray particle can leave through
bottom, so even asymptotically at largeM we cannot expec
to achievePL51. The simplesta priori estimate, given tha
the dark gray particle can leave the simulation through eit
of two possible exits, would be thatPL50.5 asymptotically.
In fact, the black particle competes for the void position,
PL is less than this value. We evaluatePL asymptotically by
performing a simulation with largeM (M5100), which
givesPL→0.426. Using this value and theM51 simulation
value as fit parameters, we find

P̃L50.426
mL0.474

mL0.47410.526
, ~8!

which we plot as a solid line in Fig. 7.
The horizontal scales for the pseudolattice and continu

simulations are identical. For the continuum case the num
of opportunities is taken to bêVs&/Vk , where^Vs& is the
measured mean vertical velocity of the dark gray partic
Agreement seems reasonable between both the pseudol
and continuum simulations and the analytic result predic
from Eq. ~6!.

We turn next to two example problems: flow along
boundary and bulk flow in a 2D tapped container. Our a
proach in both cases is to separate the convective flow
two distinct stages: a dilation stage, during which voids
introduced, and a subsequent relaxation stage, during w
material settles to fill the voids. Dilation is experimenta
observed to promptly follow a vertical tap to a resting ma
of particles, and we assume that the dilation stage has
effect of nearly randomly introducing voids into the mass
is during the relaxation stage that these voids are filled
cording to stochastic relations, such as Eq.~6!. We remark
that this construction, in which dilation and relaxation stag
are distinguished, is a theoreticalnecessityfor convective
motion@10#. That is, the existence of convection relies on t
fact that particles follow different trajectories on their wa
up and on their way down. If particles were to rise and f
according to the same, reversible, rule~or, equivalently, if
particulate flow were to obey a single convective equat
during each stage!, then convection could not occur.

C. Example 1: Boundary flow in a 2D tapped container

Let us consider a simple example to start with. Followi
an upward impact to a square container partially filled w
grains, it has been observed that particles within a fixed
tance from the side walls of the container initially rema
fixed with respect to the walls, while particles further into t
container dilate in response to the impact@7#. This motivates
us to study a column of particles~which we associate with
particles near a wall! adjacent to another column containin
a number of voids~simulating material in the bulk!. This is a
convenient first problem because it can be modeled as a
dimensional stack of particles that leak out into the bulk i
k
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prescribed way. In Fig. 8, we sketch a stack of particles
several successive times. We divide the stack vertically i
equal segments of heightDz ~expressed in units of particle
diameters!.

We denote the probability that a particle leaves the lo
est, stationary segment of the stack for the bulkPa, and after
an impact the stack can, on average, settle by moving

N15ParvDz ~9!

particles downward, whererv is the void fraction adjacent to
the boundary layer.

The probability that a particle leaves the second segm
from the bottom is then prescribed by Eq.~6!, wheremL is
the number of opportunities for penetration presented to e
void. This number in turn ismL511N1 /w, wherew is the
width of the boundary layer expressed in particle diamete
So the number of particles that can be expected to leave
second segment is given by

N25
mLPa

mLPa1Pb1P0
rvDz ~10!

5
w1N1

~w/b!1w1N1
rvDz, ~11!

wherePb andPc are the numbers of voids adjacent to t
second segment, which would be filled from directly abo
and from the bulk, respectively, andb5Pa /(Pb1Pc). No-
tice that for the typical case, where material predominan
settles directly downward into voids,Pa!Pb , so b!1. In
this limit, we find

N2'~11N1 /w!brvDz, ~12!

or, more generally, the number of particles leaving thekth
segment for the bulk is

FIG. 8. Schematic of particle egress from boundary layer i
bulk at successive times. At timet50, a fractionPa of particles in
a unit heightDz escape from the boundary layer. A short time lat
at time t51, the particles supported by this unit height fall wi
speed V1 , resulting in an enhanced penetration probabili
N1Pa . This process is amplified as time and height in the bound
layer increase.
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Nk'S 11
Nk21

w DbrvDz. ~13!

This is equivalent to

Nk'~brvDz/w!
12~brvDz/w!k21

12~brvDz/w!
w

1~brvDz/w!k21N1 . ~14!

Thus, in this approximation, the number of particles lea
ing the boundary layer increases exponentially to lead
order with height from the bottom of the container. Sin
these particles support the particles above them, we ca
ternatively write that the downward velocity of particles~ex-
pressed as the number of particles moved per tap! grows with
height according to

Vk5(
j51

k

Nj , ~15!

and, using the approximation thatbrvDz!1, we find

Vk'~brvDz/w!N11kw~brvDz/w!2~brvDz/w!k11N1

'~brvDzN1 /w!1~brv!z2~brvDz/w!~z1Dz!/DzN1 ,

~16!

wherez is the number of particles~i.e., the height! from the
bottom of the container. Equation~16! gives an explicit pre-
diction for the dependence of vertical velocity on height
the boundary layer of a periodically tapped container
grains. We especially draw attention to the signs in this eq
tion: the linear terms must be positive, while the exponen
term must be negative. Consequently, we expect the bo
ary velocity to increase with height, possibly to a maximu
value, and thereafter to diminish. We compare this predic
with two different types of numerical simulations in subs
quent sections.

This result is based on several explicit and tacit assu
tions. ~1! The analysis assumes that particles settle star
from the bottom of a stack of particles and working upwa
to the top. This assumption is crucial, for it defines t
mechanism by which velocities are amplified higher up
the stack. We remark, however, that the results should no
expected to hold for very tall containers of grains. In the
problems, particles may settle within multiple, independe
vertically separated bands@18#. ~2! The rate of transverse
particle motion is assumed to be related to the relative v
tical velocity of neighboring columns of particles. We ha
employed a particular stochastic description of this relati
other descriptions might work as well.~3! The distribution of
voids is assumed to remain uniform with height. This p
mits us to use the simplification that the void fractionrv is
constant. This assumption is not crucial, but it simplifi
analysis.~4! The analysis applies to experiments in which
of the grains in the container come completely to rest follo
ing each impact.~5! The probability of filling a void from
above is assumed to greatly exceed that from the side~6!
The derivations are chiefly applicable far from the bottom
the container. Near the bottom, analysis is still possible
-
g

al-

f
a-
l
d-

n
-

p-
g

be
e
t,

r-

;

-

l
-

f
n

principle using Eq.~13!, but it should be kept in mind tha
there will be no justification for expectingrv to be indepen-
dent of height there.

Finally, the boundary flow is driven in this scenario by th
presence of voids in the bulk, and their absence along
boundary. This void contrast, coupled with the velocity d
pendence of void penetration@Eq. ~6!#, is what produces the
complex flow, Eq.~16!. Presumably, the experimentally ob
served void contrast is produced by friction and pack
variations@19# between the particles and the container wa
This suggests that the downward boundary flow should
impeded in containers with polished walls and augmented
containers with roughened walls.

D. Example 2: Bulk flow in a 2D tapped container

We turn our attention next to the flow in the bulk of
tapped container of granular material. We begin with t
observation that a simple shear cannot sustain net flow u
isotropic conditions. This is due to symmetry: in a unifor
shear field, the relative velocity between any two adjac
streams of particles is constant, and, using Eq.~16!, a void
stands an equala priori chance of moving in either direction
Barring an externally provided anisotropy, we expe
voids—and, consequently, material particles—to wan
randomly and without bias. This situation changes in flo
with differential shears. In these flows, we show that p
ticles tend to migrate to regions of low shear in a way th
can be modeled by a difference equation.

Earlier we considered the special case in which partic
move only on one side of a void@Fig. 4~b!#. Now we study
the more general problem in which particles on either side
a void can move~Fig. 9!. Here we assign a relative vertica
velocity ~more precisely, a net displacement suffered by
column with respect to its neighbors during settling! DVL
5Vi212Vi on one side of the void and a different relativ
velocity DVR5Vi2Vi11 on the other. As before, the effec
of the relative velocities is to provide additional scatteri
opportunities that may enhance the probability for a parti
from one side or the other to enter the void.

In Eq. ~6!, we wrote the probability for a void to be filled
subject to a moving stream of particles on one side; we
write the corresponding formulas for streams of particles
both sides:

FIG. 9. Generic situation where a void can be penetrated fr
streams on either side, moving with different relative velociti
Vj represents the vertical velocity of thej th column of particles.



he

re

es
r
is

w

in
a
in
t
he
h
a

al
tio

a

x
o
u
-

in
ins

as
m

ary
q.
.

is

,

s a

ro-
orm

at

as-
ins
ext

al

y
ies
is

tric

-

55 6127ROLE OF VOIDS IN GRANULAR CONVECTION
PL5
mLP1

mLP11P21mRP3
,

PR5
mRP3

mLP11P21mRP3
, ~17!

where the numbers of opportunities to fill the void from t
left or the right are, respectively,mL andmR . These num-
bers in turn depend onDVL andDVR according to

mL511uDVLu,

mR511uDVRu. ~18!

So if we again adopt the approximation that voids are p
dominantly filled from directly above, thenP2@mLP1
1mRP3, and we find

PL'~11uDVLu!b1 ,

PR'~11uDVRu!b3 , ~19!

where b1'P1 /P2 and b3'P3 /P2 . Thus the flow into a
void from either side is proportional to the relative velociti
of constituent particles with respect to the void. The diffe
ence in probabilities for the motion of a void to either side

PL2PR'~b12b3!1~b1uDVLu2b3uDVRu!. ~20!

For isotropic problems~e.g., far from boundaries!, we can set
b15b3 , and the number of particles that we expect to flo
into the center column from either side is, therefore,

U25rv~PL2PR!'rvb1~ uDVLu2uDVRu!. ~21!

Conservation of particles implies that, neglecting pack
differences, as a particle moves from one column to an
jacent one, the column that receives the particle must
crease in height by one particle diameter. Consequently,
vertical velocity of a column following a tap depends on t
number of particles that are deposited into the column. T
is, the increase in a column’s vertical velocity is proportion
to U2 . Thus we write

z
DV

Dz
'j2rvb1

D2V

Dx2
, ~22!

where z and j are characteristic vertical and horizont
lengths for the problem. We use the suggestive nota
D2V[uV12V2u2uV22V3u, and in order to algebraically
separate physically distinct terms, we rewrite this equation

P2z
DV

Dz
'rvP1j

2
D2V

Dx2
, ~23!

whereDx is the separation between particle centers~roughly
given by the particle diameter!, andDy is their vertical sepa-
ration.

This is a difference equation that, subject to the appro
mations detailed above, governs granular flow in the bulk
a tapped container. Consider a few properties of this eq
tion. First, solutions to Eq.~23! that are reflectionally sym
metric aboutx50 include
-

-

g
d-
-
he

at
l

n

s

i-
f
a-

V5V01V1cosh~x/ArvP1j
2!ez/P2z. ~24!

This result is in agreement with careful experimental work
which the precise flow field in tapped containers of gra
has been measured directly@20#.

Second, convective behavior as a function ofz is not pre-
scribed by Eq.~16! alone; it depends on the system size
well, since the response in the bulk is driven by inflow fro
the boundary. In smaller systems~i.e., wherew/j;1!, the
vertical flow can be expected to be dominated by bound
effects, and thez dependence in the bulk should obey E
~10!. In larger systems~i.e.,w/j!1!, on the other hand, Eq
~16! should hold in the bulk. By examining Eqs.~10! and
~16!, we find that the length scale over which material
driven into the bulk from the boundary isLb[w/rv , while
the length scale over which the bulk responds isLB[P2z.
Thus, tall, narrow containers should haveLb!LB and
boundary effects@Eq. ~10!# should dominate, while short
broad containers should haveLb@LB and Eq.~16! should
hold.

Third, the amplitude of convection can be expressed a
function of driving parameters by making use of Eq.~4!. In
that equation, we showed that the size of void space p
duced between an inelastic mass and a supporting platf
that vibrates according toz5A sin(vt) obeys a simple rela-
tion for sufficiently high frequency. It stands to reason th
the void fraction in the bulkrv, will be simply proportional
to this void size. Thus, we expect

rv>CS 10.54A2
48.34g

v2 D , ~25!

with some proportionality constantC. Although we are con-
sidering here sinusoidal vibration of the container, we
sume that we are still operating in a regime where the gra
come to rest between one cycle of vibration and the n
@20#. Together with Eq.~24!, this implies a particular form
for the dependence of the convective velocityV onA andv.
That is, at any fixed location (x0 ,y0),

V~x0 ,y0!5C01C1cosh~C2 /AA2C3 /v
2!, ~26!

whereC0 , C1 , C2 , andC3 are constants. For the speci
case where the accelerationg5Av2 is held fixed, this be-
comes

V~x0 ,y0!5C01C1cosh~C4v!, ~27!

whereC45C2 /Ag2C3. It is understood that the frequenc
in Eq. ~27! is measured above an onset value; for frequenc
below this value, the convective velocity vanishes. There
some experimental evidence@21# that indicates that for this
case the velocity is exponential inv. It would be interesting
to determine whether Eq.~27! in fact fits the data.

Finally, a complete set of solutions to Eq.~23! includes
reflectionally antisymmetric basis functions:

V5V01V1sinh~x/ArvPij
2!ez/P2z. ~28!

In simple rectangular containers, we expect to see symme
solutions of the form~24!; in asymmetric containers,C1

compositions of Eqs.~24! and ~28! are possible. One addi
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tional possibility may occur in containers with period
boundary conditions@22#. In that case, it is possible to obta
solutions periodic inx, provided that the solutionsdecay
with height; for example,

V5V01V1cos~x/ArvP1j
2!e2z/P2z. ~29!

III. CELLULAR AUTOMATA SIMULATIONS

We can test these results in numerical simulations us
the following algorithm@23#. For simplicity, we fix particles
on a rectangular lattice. As we show, this approximation
sufficient to generate data largely in agreement both w
preexisting experiments and with the preceding analysis.
complete the description of the problem, we need to spe
initial and boundary conditions@24#. Throughout our simu-
lations, we take the mean initial void fraction to berv>

1
4. In

Fig. 10, we show two possible initial configurations of void
In Fig. 10~a!, we show an initially random@10# set of voids
in the bulk, with no voids along a narrow side bounda
layer ~shaded gray!. We randomly assign void location
within the bulk ~and displace supported particles upward
need be! because there are no good experimental@25# studies
to guide us in the correct placement of voids immediat
following an impact. We include no voids near the si
boundaries in keeping with experimental reports that do e
@7#. In Fig. 10~b!, we sketch a slightly different initial state
in which voids are inserted in boundary layers nearest
corners of the container; the particles coming from th
voids are displaced horizontally to occupy the nearest pr
ously allocated voids in the interior~displaced particles stil
shaded gray!. The inclusion of this second initial state in ou
simulations is motivated by the following speculation@7#.
Video footage@26# taken of vibrated containers filled wit
grains indicates that a large void initially forms at the botto
and center of a container during the vibration cycle. It a
pears from the video frames that the static boundary lay
adjacent to the void then collapse into the void before
mass of grains above has the chance to fully relax back to
bottom of the container. It has been speculated that this
lapse plays a major role in driving the ultimate convect
motion of the grains@27#. To investigate this speculation, w

FIG. 10. Initial state of lattice immediately following a tap.~a!
Voids randomly distributed in interior;~b! particles in corners
moved to fill interior voids. Gray shaded particles along bounda
are held fixed initially. Black shaded particles are markers, initia
placed in a horizontal line, ten particles from the bottom.
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include this scenario in our simulations. We have also st
ied the effects of eliminating the random allocation of voi
in favor of placing voids only at the bottom and center of t
container. The convective flow resulting from this initi
state differs only slightly from the flow that we present, an
since the random allocation of voids@16# seems lessad hoc
to us we choose the random case here.

Given an initial configuration of voids, the next comput
tional step is to percolate the voids upward. The rule
percolation is prescribed from our analysis: voids must mo
@28# directly upward with fixed probabilityP2 and diago-
nally upward to the left or right with probabilitiesP1 and
P3 . We consider the symmetric case@29# P15P3 . At every
vertical heighth starting from the bottom of the collection o
particles, we perform the following computational task
First, we allow particles nearest the bottom to percol
downward one level. Next, we allow particles one lev
higher to percolate a level down, and so forth, up to
heighth. We repeat this process until all particles belowh
come to rest~i.e., all voids reach the surface of the descen
ing particles!. At this point, we incrementh by one particle
diameter and repeat the process.

To observe the convective flow field, we track a line
marker particles. For example, in Fig. 10 we show~in black!
the locations of marker particles initially placed ten partic

s

FIG. 11. Final state of lattice following upward percolation
all voids for the initial states shown in Fig. 10.

FIG. 12. 400 particles on lattice; each simulated tap delivers
voids at random into the interior of the heap. A two-particle-wi
boundary layer along each side receives no voids initially. Le
shape of heap with initially horizontal marker particles~placed at a
height of ten particle diameters! after 300 taps. Right: circles give
average positions of marker particles over 300 successive taps
gives fit to Eq.~24!.
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55 6129ROLE OF VOIDS IN GRANULAR CONVECTION
from the bottom~dashed line! immediately after the tap. In
Fig. 11, we show the locations of the same particles for b
cases of initial states after the voids have percolated upw
Notice that the qualitative behavior is similar for both initi
states. For example, the final surface of the pile form
rounded heap, and the marker particles have been scat
by the flow. Several quantitative differences exist, howev
as we discuss next.

A. Zero corner voids

Let us first examine the naive initial state shown in F
10~a!. In this case, the cosh solution presents itself a
concave-up curve, as shown on the right of Fig. 12. In
figure, we apply 300 successive taps and display the a
aged displacements of each of the marker particles on
right. On the left, we show the displacement incurred
tween the 299th and the 300th tap. The solid curve plotted
the right is a best fit to a cosh excluding the three poi
nearest the boundary@30# on either side and has correlatio
coefficient 0.95. The mechanism that leads to this cu
seems to be as follows. Particles in the initially static bou
ary layer become entrained into interior voids. When t
occurs, the boundary layer falls, demonstrated by the ne

FIG. 13. 400 particles on lattice; each simulated tap delivers
voids at random into the interior of the heap. Eight voids are de
ered into the bottom of each side of a two-particle-wide bound
layer and these 16 particles are distributed at random into the lo
existing voids in the interior. Left: shape of heap with initial
horizontal marker particles~placed at a height of ten particle diam
eters! after 300 taps. Right: circles give average positions of mar
particles over 300 successive taps; line gives fit to Eq.~24!.
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tive displacements near the walls shown on the right of F
12. These particles are delivered primarily to the colum
immediately adjacent to the boundary layer, so these
umns increase their ultimate height by a correspond
amount. Finally, the cosh behavior predicted is seen in
interior of the lattice, subject to the boundary condition e
tablished by the columns adjacent to the boundary layer.
horizontal wave number predicted by Eq.~24! for the cosh
solution is given bykx51/ArvP1j

2>0.63. This agrees with
the fit shown below, which haskx50.760.2.

B. Added corner voids

If we include voids in the corners of the container,
shown in Fig. 10~b!, the flow undergoes a distinct transfo
mation. In Fig. 13, we repeat the simulations of Fig. 12 un
precisely identical conditions except that eight new voids
added in each of the corners along the two-particle-w
boundary layers@31#. Now the concave-up cosh solution
switch to concave-down cosh solutions. The fit is ag
good, with correlation coefficient 0.99. The horizontal wa
number predicted by Eq.~24! for the cosh solution here is
againkx>0.63, which once more compares favorably w
the fit to the simulation data withkx50.6660.05.

From these comparisons we conclude that thex depen-
dence of the displacements resulting from discrete tap
well described by Eq.~24! from our model, irrespective o
the details of the boundary conditions. The character of
flow that results depends sensitively on these details, h
ever. In particular, these results support the speculation
Ref. @7#: the collapse of boundary particles from the low
corners of the container into the bulk flow does seem to dr
the concave-down cosh flow observed in convection exp
ments@32#.

C. Different aspect ratios

The same behavior holds for other aspect ratio lattices
well. In Figs. 14 and 15, we show results for lattices w
aspect ratios 1:2 and 2:1 and approximately the same
number of particles and voids as in Figs. 12 and 13. In
cases, a two-particle-wide static boundary layer is us
Again, particles flow down the sides of the container, up
center, and good cosh fits are observed in the interior; co
lation coefficients for the fits shown in Fig. 14 are 0.97 a

6
-
y
st

r

left
FIG. 14. Lattices containing~a! 28314 and~b! 14328 particles with initial conditions, as in Fig. 12. Marker positions are shown to
of graphs and circles in graphs give average positions of markers over 300 taps, while lines give fits to Eq.~24!.
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FIG. 15. Lattices containing~a! 28314 and~b! 14328 particles with initial conditions as in Fig. 13. Marker positions are shown to
of graphs and circles in graphs give average positions of markers over 300 taps, while lines give fits to Eq.~24!.
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0.92. With added voids in the corners~Fig. 15!, the fits are
also good, with correlation coefficient 0.99 for both asp
ratios shown.

D. Vertical dependence

We can also use this model to investigate the vert
dependence of the displacement following a tap. In Fig.
we show the displacement of an initially vertical line
marker particles~following 300 successive taps! placed in
the horizontal center of the particle lattice both immediat
following a tap and after the particles have settled. In
results that follow, we include excess voids in the corners
the container as discussed in the preceding section, since
initial state seems to best conform to experimental conv
tion data. We apply 300 successive taps and display the
eraged displacements of each of the marker particles in
17. In the figure we also include a fit to Eq.~16! using the
lowest 14 marker particles@33#. The reason for fitting only
the lowest 14 particles can be discerned by examination
Fig. 17: particles above this point are strongly influenced
the surface flow over the outside of the heap. This flow
well captured by the simulation, but is not a part of t
analysis leading to the prediction of a linear-exponential
pendence of displacement on height@Eq. ~16!#. These results
indicate possible avenues for experimental validation.

IV. PARTICLE-DYNAMICS SIMULATIONS

A. Velocity profiles

To validate our theoretical results further, we have p
formed soft-particle-dynamics simulations@34#. We placed

FIG. 16. Initial ~left! and final~right! states of lattice with ver-
tical array of marker particles.
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409 particles in a two-dimensional container approximat
20 mean particle diameters wide and shook the conta
through 50 separate cosinusoidal vertical oscillations. F
lowing each complete cycle, all particles were allowed
come to rest. The container itself was lined with stationa
particles so that the friction against the container walls w
identical to the interparticle friction. Particle diameters a
polydisperse, with mean 3 mm and variance 0.1 mm. T
amplitude of oscillation of the base was 1 cm, and the f
quency of oscillation was 5 Hz, resulting in an accelerat
G5Av2>4g.

Results of these simulations are shown in Figs. 18–20
Figs. 18~a! and 18~b! we show how an initially horizonta
line of particles chosen midway up the stack of particles
displaced following one oscillation cycle, and in Fig. 18~c!
we show~open circles! the average vertical displacements
these particles over 50 cycles@35#. For comparison, we also
show a fit to a cosh as a solid line. The parameters of f
tion, coefficient of restitution, and elasticity are essentia
chosen arbitrarily, and as a result the surface shape and
locity profile parameters do not correspond precisely w
preceding plots~e.g., Fig. 13!. Nevertheless, the fit to a cos
is excellent, with correlation coefficient 0.997, and the velo
ity profile is unequivocally concave-down. This is in qua
tative agreement both with our stochastic void-penetrat
model and with experiments@6#. Quantitatively, the wave
number and other parameters defining the displacement
file depend on material properties and differ therefore fr
the lattice case.

FIG. 17. Left: positions of initially vertical column of marke
particles at center of lattice after 300 taps. Right: vertical displa
ments of markers versus initial height. Circles give averages o
300 taps; line is best fit to Eq.~16! of the 14 data points below the
~shaded! surface.
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FIG. 18. Soft-particle-dynamics simulations of 409 particles shaken sinusoidally through 50 separate cycles. Polydisperse
allowed to come to rest between cycles.~a! Particles before 50th cycle; marker particles~shaded black! chosen to have centers lying betwee
9.5 and 10.5 mean particle diameters from bottom.~b! Particles after 50th cycle;~c! mean vertical displacements of marker particles over
cycles~circles! and fit by cosh~line!.
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We have also evaluated the dependence of velocity pro
on height within the stack of particles~cf. Fig. 17!. These
results, shown in Fig. 19, provide strong confirmation of t
predictions of our model. As we mentioned earlier, t
model requires that the vertical velocity increase, accord
to a particular linear-exponential law, where the linear te
must have a positive coefficient and the exponential te
must have a negative prefactor. In Fig. 19, we show
corresponding particle-dynamics simulation. In Fig. 19~c!,
we show, as open circles, the average over 50 cycles of
tical displacements of marker particles as a function
height @36#. We also plot, as a solid line, the fit to Eq.~16!
with coefficients with the prescribed signs. The fit has cor
lation coefficient 0.991. As in Fig. 17, we exclude poin
near the surface~shaded gray!.

B. Modified boundary flow

A final prediction from our cellular automata simulation
is that the convective velocity field depends strongly
boundary conditions. For example, the convective veloc
field studied here is evidently driven by a downward flo
along the side walls. By interrupting this boundary flow, w
le

e

g

m
e

r-
f

-

y

should be able to transform the velocity field from
concave-down cosh@with a convex top surface defined by
distinct angle of repose—cf. Figs. 13, 14~a!, and 15# to a
concave-up cosh@with a flattened, possibly even concav
surface—cf. Fig. 14~b!#. Since the downward boundary flow
can in turn only be driven by the downward flow of the si
walls during shaking, one way to do this would be to mo
the bottom of the container down within a container w
fixed walls. Alternatively, stepped or terraced side wa
could be used to interrupt the boundary flow and genera
concave-up flow profile.

We have tested this prediction as well, using partic
dynamics techniques. In Fig. 20, we periodically lower on
the bottom surface of the container, keeping the side w
fixed @37#. This interferes with the presumed downthrust
the boundary layer due to wall motion. In this case, we se
concave-up, small-amplitude~cf. Fig. 12! displacement pro-
file.

CONCLUSIONS

By focusing on the dynamics of void motion, we hav
developed a model that duplicates many experimentally
0.5
ver
FIG. 19. Soft-particle-dynamics simulations as in Fig. 18, with marker particles~black! chosen to have centers between 9.5 and 1
particles from left wall.~a! Particles before 50th cycle;~b! particles after 50th cycle;~c! mean vertical displacements of marker particles o
50 cycles~circles! and fit to Eq.~16! ~line!. Particles very near the surface~shaded gray! are excluded from the fit.
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FIG. 20. Soft-particle-dynamics simulations of 409 particles, in which the bottom of container is periodically lowered but side w
fixed through 50 separate cycles. Polydisperse particles allowed to come to rest between cycles.~a! Particles before 50th cycle; marke
particles~shaded black! chosen to have centers lying between 9.5 and 10.5 mean particle diameters from bottom.~b! Particles after 50th
cycle; ~c! mean vertical displacements of marker particles over 50 cycles~circles! and fit to cosh~line!.
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served features of granular convection. Our results indic
that the qualitative mechanism driving granular convect
may simply be that void penetration depends on relative
locities of adjacent particles. The role of this velocity diffe
ential is to provide additional scattering opportunities th
may permit a particle from one side or the other to enter
void. Using this model, it is not difficult to understand th
mechanism that drives particles toward regions of low sh
voids in a differential shear field are more likely to exchan
places with particles in the direction with higher relative v
locity. Conversely, particles will tend to migrate toward r
gions of low shear. This migration seems to be what lead
intriguing observed flow behaviors in granular convection

Quantitatively, we conclude that the detailed behavior
the displacements resulting from discrete taps is well
scribed by Eqs.~16! and~24! from our model. The characte
of the flow that results seems to depend rather sensitivel
the specifics of the boundary conditions@38#. In particular,
results suggest changes in convective devices that sh
significantly change the convective velocity field. For e
ett
.

.

S

,
.

te
n
-

t
e

r:
e
-

to

f
-

n

ld
-

ample, the convective velocity field studied here is eviden
driven by a downward flow along the side boundaries.
interrupting this boundary flow, it should be possible
transform the velocity field from a concave-down cosh to
concave-up cosh. Since the downward boundary flow ca
turn only be driven by the downward flow of the side wa
during shaking, one way to do this would be to move t
bottom of the container within a container with fixed wall
Alternatively, stepped or terraced side walls could be use
interrupt the boundary flow and generate a concave-up fl
profile. This and other predictions remain to be experim
tally tested.
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